N. B. Cherfas • Y. Peretz • N. Ben-Dom B. Gomelsky • G. Hulata

Induced diploid gynogenesis and polyploidy in the ornamental (koi) carp *Cyprinus carpio* L.

3. Optimization of heat-shock timing during the 2nd meiotic division and the 1st cleavage

Received: 12 July 1993 / Accepted: 25 November 1993

Abstract The results of a series of experiments conducted in our laboratory on the ornamental common carp (koi), aimed at optimizing heat-shock chromosomeset manipulation procedures, are described. The timing of heat-shock initiation was expressed in the relative unit of embryological age (τ_0) in order to standardize this parameter, the absolute time for heat-shock initiation being calculated from duration of one τ_0 at two different pre-treatment water temperatures. Heat shocks were applied within the periods of 0.05–0.60 τ_0 and 1.20–2.20 τ_0 which, respectively, cover the successive phases of the 2nd meiotic division and the 1st cleavage. The highest production of diploid gynogenetic offspring was observed when heat shocks were initiated at 0.15–0.25 τ_0 and at 1.5 $\tau_0,$ after insemination, corresponding to anaphase of meiosis-II, and metaphase of the 1st cleavage, respectively. Similar results were obtained irrespective of the different pre-treatment water temperatures, thus confirming the possibility of standardizing heat-shock timing by τ_0 .

Key words Common carp · Chromosome-set manipulations · Heat-shock timing · Induced gynogenesis

Introduction

Heat shock, as an agent for inducing chromosome-set diploidization, has been used in several experiments to induce diploid gynogenesis in the common carp, *Cyprinus carpio* L. (Hollebecq et al. 1986; Nagy 1987; Gomelsky et al. 1989; Sumantadinata et al. 1990; Komen et al. 1991; Rothbard 1991). Although its effec-

tiveness is dependent on the initiation time after insemination, optimum timing varies between different studies, presumably because the various incubation temperatures used prior to heat shock cause post-fertilization processes to develop at different rates. We have, therefore, concluded that additional investigations in this area were desirable in order to further optimize temperature-shock methods for chromosome-set manipulation in the common carp.

In order to standardize timings we have used the unit of relative embryological age, " τ_0 ", which is equivalent to the duration of one mitotic cycle during synchronous cleavage. According to the theory of Dettlaff and Dettlaff (1961), the duration in absolute time of one τ_0 is temperature dependent, but a given embryological stage (within the optimal temperature range for any given species) has a constant value if expressed in τ_0 units. Consequently, it is assumed that the embryological stages when temperature-shock initiation will be effective may also be defined in terms of τ_0 , irrespective of pre-treatment water temperature. This unit (as a measure for timing heat-shock initiation) was used by Gomelsky et al. (1989) and Rothbard (1991) in experiments on induced gynogenesis in the common carp. In a preliminary study on heat shock at the first cleavage (Cherfas et al. 1993), the absolute time for heat-shock initiation was calculated from the duration of one τ_0 at the pre-treatment temperature of 20 °C and 25 °C used by Ignatieva (1974). The similarity of the two survival curves obtained suggested that a standardization of heat-shock timing can be achieved.

The present paper describes the results of further optimization experiments conducted in 1991–1992. The experimental procedure was improved since the two pre-treatment water-temperature variants were carried out simulataneously, using eggs of the same female. Thus, the two series of each experiment differed in pre-treatment water temperature only, while all other experimental conditions were identical. In addition, a new (more precise) calculation of the duration of τ_0 was used (Ignatieva and Saat, personal communication).

Communicated by G. Wenzel

N. B. Cherfas (🖂) • Y. Peretz • N. Ben-Dom • B. Gomelsky • G. Hulata

Agricultural Research Organization, Fish and Aquaculture Research Station, Dor, Mobile Post Hof Hacarmel 30820, Israel

Materials and methods

The experiments were conducted at the Fish and Aquaculture Research Station, Dor, during 1991–1992. Females of the ornamental common carp (koi) and males of the Israeli Dor-70 carp line were used as breeders. Recessive orange body colour in koi females, and dominant wild-type body colour in Dor-70 males, served as genetic markers to confirm gynogenetic origin in the experimental progenies, as in our previous studies (Cherfas et al. 1990, 1993). All investigations were carried out on gynogenetic progenies of the ornamental (koi) common carp obtained by insemination of koi eggs with geneticallyinactivated sperm of the edible (wild-type coloured) carp. A UV dose of $800 j/m^2$ was used for genetic inactivation of the sperm (Cherfas et al. 1990).

The experimental procedures were identical to those described by Cherfas et al. (1993). Standard techniques of artificial propagation of the common carp (Rothbard 1981) were used, and eggs of a single female were employed in each experiment. Inseminated eggs (100-500) were shocked and incubated, attached to Petri dishes placed on trays, within a temperature-controlled water circulation system. Three experiments (exp. 13/91, 14/91, 15/91) studied the effects of heat shock at the 2nd meiotic division and four (exp. 2/91, 5/91, 3/91, 3/92, 4/92) the effects of heat shock at the 1st cleavage.

According to recent data (Ignatieva 1974; Saat 1991), the 2nd meiotic division in the common carp is completed at 0.48 τ_0 , and the 1st mitotic division at 2.1–2.3 τ_0 , after insemination. Heat shocks were initiated (at 0.05 τ_0 intervals) within the ranges 0.05–0.60 τ_0 , and 1.2–2.2 τ_0 (at 0.1 τ_0 intervals) after insemination, in order to disturb meiosis-II and mitosis-1, respectively. The period from 0.6 to 1.2 τ_0 has previously been shown to be ineffective (Gomelsky et al. 1989; Cherfas et al. 1993). Two synchronous temperature series (20 °C and 24 °C) were used, in which heat shock was initiated at the same embryological age after insemination, expressed in τ_0 , but at different absolute times. The absolute time for heat-shock initiation was calculated (Table 1) from the duration of one τ_0 at these temperatures, according to Ignatieva and Saat (personal communication).

The parameters of temperature and duration of heat shock were chosen on the basis of the results of previous investigations (Gomelsky et al. 1989; Komen et al. 1991; Cherfas et al. 1993), and were not re-examined. They were as follows: 38.9-39.5 °C for 2.0–2.5 min in experiments on shock timing at the 2nd meiotic division, and 39.5-39.8 °C for 2.5–2.8 min in experiments on shock timing at the 1st mitotic division.

Non-shocked, presumed haploid, groups of the same gynogenetic progenies were used as controls in each experiments to estimate the quality of eggs, the fertilization rate (i.e., the number of embryos starting gynogenetic development), and the frequency of spontaneous diploid gynogenetic larvae.

The results were analyzed at two time intervals, namely as embryos surviving prior to hatching and as diploid (presumed gynogenetic) larvae of normal appearance surviving 2-3 days after hatching. The results were compared by a t-test.

Table 1 Time for heat-shock initiation after insemination

Pre-treatment water temperature (°C)	Duration of one τ_0 , (min) ^a	Investigated period (min)			
		2nd meiotic division $(0.05-0.6 \tau_0, 0.05 \tau_0$ intervals)	1st mitotic division $(1.2-2.2 \tau_0, 0.1 \tau_0 \text{ intervals})$		
20	29.4	1.5-17.6 (1.45 min	35.3–64.7 (2.94 min		
24	20.4	1.0–12.2 (1.02 min interval)	24.5–44.9 (2.04 min interval)		

^a According to Ignatieva and Saat (personal communication)

Results

Heat shock at the 2nd meiotic division

The data are presented in Table 2 and Fig. 1. Heat shock resulted in decreased embryo survival, compared to the control, with lowest embryo survival observed when heat shock was applied prior to $0.10 \tau_0$, or later than $0.30 \tau_0$, after insemination. Highest embryo survival (although lower than in the control) was observed when heat shock was initiated at $0.15-0.25 \tau_0$ after insemination.

The effective period for heat-shock initiation coincided with the period of high survival in shock-treated offspring $(0.10-0.25\tau_0)$. The highest output of diploid gynogenetic larvae was obtained when heat shock was initiated within $0.15-0.25\tau_0$ after insemination. Only few, or no, diploid larvae were obtained when heat shock was applied earlier or later than this period, even if embryo survival was relatively high (e.g., at $0.45-0.60\tau_0$ in exp. 14/91; Table 2). The patterns of results at the two temperature series were not significantly different [$t_{(df=11)} = 1.07$ for survival and 0.15 for 2n-larvae production]. The highest production of diploid gynogenetic larvae was 36.5% of the total number of inseminated eggs, or 52.2% of the number of live embryos prior to hatching, when heat shock was initiated at $0.15\tau_0$ (Exp. 15/91, Table 2).

Heat shock at the 1st mitotic division

The results of incubation are presented in Table 3 and Fig. 2. A decrease in embryo survival (compared to the controls) was observed in all shock-treated offspring. It was extremely low (even zero) when heat shock was initiated at $1.6-1.9 \tau_0$ after insemination.

Although a few diploids were also obtained at other periods, a peak output of diploid larvae was obtained when heat shock was initiated in the period $1.4-1.6 \tau_0$

Shock initiation (in t_o)

Shock initiation (τ_0)	20 °C prior to heat shock				24 °C prior to heat shock			
	No. of eggs	Survival prior to hatching (%) ^a	2n-larvae		No. of eggs	Survival prior to hatching	2n-larvae	
			(No.)	(%) ^a		(%) ^a	(No.)	(%) ^a
Experiment	13/91							
0.05	306	19	3	0.9	251	3	0	0.0
0.10	281	39	0	0.0	290	21	2	0.6
0.15	317	49	3	0.9	181	48	2	1.1
0.20	269	59	16	5.9	278	60	6	2.1
0.25	233	60	13	5.6	210	66	22	10.4
0.30	258	45	5	1.9	215	40	5	2.3
0.35	356	35	0	0.0	238	44	1	0.4
0.40	484	18	0	0.0	218	27	3	1.3
0.45	347	20	1	0.3	203	20	0	0.0
0.50	234	20	Ö	0.0	204	14	0	0.0
0.55	220	24	0	0.0	239	23	0	0.0
0.60	290	33	Ō	0.0	229	28	Ō	0.0
C ^b	226	77	0	0.0			-	
Experiment	14/91							
0.05	315	18	1	0.3	261	21	1	0.3
0.10	295	38	7	2.3	212	44	9	4.2
0.15	470	32	1	0.2	231	52	18	7.7
0.20	273	57	18	6.5	242	46	12	4.9
0.25	253	53	11	4.3	245	49	5	2.0
0.30	241	52	10	4.1	321	42	8	2.4
0.35	172	46	3	1.7	216	45	2	0.9
0.40	153	39	2	1.3	188	42	0	0.0
0.45	370	37	1	0.2	226	38	Ô	0.0
0.50	322	36	ō	0.0	231	42	Õ	0.0
0.55	226	45	0	0.0	205	40	0	0.0
0.60	239	62	Ō	0.0	201	61	Õ	0.0
C ^b	287	71	Õ	0.0			v	0.0
Experiment	15/91							
0.05	205	26	6	2.9	390	25	18	4.6
0.10	258	30	13	5.0	238	40	34	14.2
0.15	178	70	65	36.5	278	63	65	23.3
0.20	304	54	18	5.9	280	25	22	7.8
0.25	200	18	9	4.5	269	16	8	2.9
0.30	195	13	1	0.5	195	10	2	1.0
0.35	285	10	0	0.0	466	6	0	0.0
0.40	332	13	0	0.0	274	5	0	0.0
0.45	389	8	0	0.0	233	12	Ō	0.0
0.50	321	6	0	0.0	222	7	0	0.0
0.55	258	4	0	0.0	267	8	Õ	0.0
0.60	326	6	Ō	0.0	348	11	ŏ	0.0
Cb	284	93	ĩ	0.4	2.0		Ň	0.0
			-					

Table 2 Results of the experiments with heat shock applied at the 2nd meiotic division at 20 °C and 24 °C incubation temperature prior to heat shock: embryo survival and the production of 2n-larvae

^a From the total number of inseminated eggs

^b No-shock gynogenetic control

after insemination. Based on the output of gynogenetic diploid larvae, the most effective heat-shock timing corresponded to $1.5 \tau_0$ after insemination (Fig. 2), which coincided with the beginning of the sharp decrease in embryo survival. Very similar production curves for 2n-larvae were obtained in the two experimental series of 20 °C and 24 °C pre-shock water temperatures (Fig. 2), though with some irregular discrepancies in different experiments (Table 3). No significant difference was revealed between the curves of the two experimental series [$t_{(df=10)} = 1.82$ for survival and 0.28 for 2n-larvae production]. The highest output of mitotic diploid

larvae was 8.4%, from the total number of inseminated eggs, or 15.3%, from the number of live embryo prior to hatching, when heat shock was initiated at $1.5 \tau_0$ (Exp. 2/91, Table 3). The output of mitotic diploid larvae was somewhat higher in the 24 °C pre-shock water temperature series (Fig. 2, Table 3).

Discussion

A strong resemblance between the two curves of diploid larvae output, obtained at two pre-shock water tem-

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	24 °C prior to heat shock			
(τ_0) $(\%)^a$ $(No.)$ $(\%)^a$ $(\%)^a$ $(No.)$ Experiment 2/911.22642331.12753931.34243961.42595331.444347235.13095471.550055428.420842161.637550277.229719121.736622113.0276521.83371141.1235301.9526710.1360602.0383900.03221902.1131200.0372483C ^b 2897510.3510Experiment 5/9110.4284510	2n-larvae			
Experiment 2/911.22642331.12753931.34243961.42595331.444347235.13095471.550055428.420842161.637550277.229719121.736622113.0276521.83371141.1235301.9526710.1360602.0383900.03221902.1131200.0372483Cb2897510.3572483Experiment 5/911.22234310.4284510	(%) ^a			
1.2 264 23 3 1.1 275 39 3 1.3 424 39 6 1.4 259 53 3 1.4 443 47 23 5.1 309 54 7 1.5 500 55 42 8.4 208 42 16 1.6 375 50 27 7.2 297 19 12 1.7 366 22 11 3.0 276 5 2 1.8 337 11 4 1.1 235 3 0 1.9 526 7 1 0.1 360 6 0 2.0 383 9 0 0.0 322 19 0 2.1 131 2 0 0.0 372 48 3 C^b 289 75 1 0.3 -76 51 0 2.2 2				
1.3 424 39 6 1.4 259 53 3 1.4 443 47 23 5.1 309 54 7 1.5 500 55 42 8.4 208 42 16 1.6 375 50 27 7.2 297 19 12 1.7 366 22 11 3.0 276 5 2 1.8 337 11 4 1.1 235 3 0 1.9 526 7 1 0.1 360 6 0 2.0 383 9 0 0.0 322 19 0 2.1 131 2 0 0.0 372 48 3 C^b 289 75 1 0.3 0 0.2 223 43 1 0.4 284 51 0 2.2 206 3 1 0.4 2	1.0			
1.4 443 47 23 5.1 309 54 7 1.5 500 55 42 8.4 208 42 16 1.6 375 50 27 7.2 297 19 12 1.7 366 22 11 3.0 276 5 2 1.8 337 11 4 1.1 235 3 0 1.9 526 7 1 0.1 360 6 0 2.0 383 9 0 0.0 322 19 0 2.1 131 2 0 0.0 282 25 0 2.2 206 3 0 0.0 372 48 3 C^b 289 75 1 0.3 0 0.4 284 51 0 2.2 2.23 43 1 0.4 284 51 0	1.1			
1.5 500 55 42 8.4 208 42 16 1.6 375 50 27 7.2 297 19 12 1.7 366 22 11 3.0 276 5 2 1.8 337 11 4 1.1 235 3 0 1.9 526 7 1 0.1 360 6 0 2.0 383 9 0 0.0 322 19 0 2.1 131 2 0 0.0 282 25 0 2.2 206 3 0 0.0 372 48 3 C^b 289 75 1 0.3 0 0.4 284 51 0 Experiment $5/91$ 12 0.4 284 51 0 0 0 0 0 0 0 0 0 0 0 0 0 <	2.2			
1.6 375 50 27 7.2 297 19 12 1.7 366 22 11 3.0 276 5 2 1.8 337 11 4 1.1 235 3 0 1.9 526 7 1 0.1 360 6 0 2.0 383 9 0 0.0 322 19 0 2.1 131 2 0 0.0 282 25 0 2.2 206 3 0 0.0 372 48 3 C^b 289 75 1 0.3 0 0.2 48 3 Experiment $5/91$ 12 223 43 1 0.4 284 51 0	7.6			
1.7 366 22 11 3.0 276 5 2 1.8 337 11 4 1.1 235 3 0 1.9 526 7 1 0.1 360 6 0 2.0 383 9 0 0.0 322 19 0 2.1 131 2 0 0.0 282 25 0 2.2 206 3 0 0.0 372 48 3 C^b 289 75 1 0.3 0.4 284 51 0 Experiment $5/91$ 1.2 223 43 1 0.4 284 51 0	4.0			
1.8 337 11 4 1.1 235 3 0 1.9 526 7 1 0.1 360 6 0 2.0 383 9 0 0.0 322 19 0 2.1 131 2 0 0.0 282 25 0 2.2 206 3 0 0.0 372 48 3 C^b 289 75 1 0.3 0 0.4 284 51 0 Experiment $5/91$ 12 223 43 1 0.4 284 51 0	0.7			
1.9 526 7 1 0.1 360 6 0 2.0 383 9 0 0.0 322 19 0 2.1 131 2 0 0.0 282 25 0 2.2 206 3 0 0.0 372 48 3 C ^b 289 75 1 0.3 0.4 284 51 0 Experiment 5/91 1 0.4 284 51 0 0	0.0			
2.0 383 9 0 0.0 322 19 0 2.1 131 2 0 0.0 282 25 0 2.2 206 3 0 0.0 372 48 3 C^b 289 75 1 0.3 72 48 3 Experiment $5/91$ 1 0.4 284 51 0 1.2 160 45 1 0.4 284 51 0	0.0			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0			
C^{b} 289 75 1 0.3 Experiment 5/91 1 0.4 284 51 0 1.2 223 43 1 0.4 284 51 0	0.0			
Experiment 5/91 1.2 223 43 1 0.4 284 51 0 1.2 1.2 216 1 0				
1.2 223 43 1 0.4 284 51 0				
	0.0			
1.5 108 45 1 0.6 246 44 0	0.0			
1.4 320 26 4 1.2 251 29 1	0.4			
1.5 275 16 2 0.7 183 12 4	2.2			
1.6 336 13 2 0.6 277 7 1	0.4			
1.7 380 2 1 0.2 186 1 0	0.0			
1.8 274 7 0 0.0 238 0 0	0.0			
1.9 249 4 0 0.0 236 1 0	0.0			
2.0 315 2 0 0.0 229 14 0	0.0			
2.1 357 15 0 0.0 287 47 0	0.0			
2.2 393 30 0 0.0 315 45 0	0.0			
C^{b} 311 82 1 0.3				
Experiment 3/91				
1.2 262 49 2 0.7 348 48 0	0.0			
1.3 238 44 1 0.4 241 59 5	2.1			
1.4 266 19 1 0.3 251 29 3	1.1			
1.5 451 3 1 0.2 295 20 14	4.7			
1.6 211 0 0 0.0 244 5 3	1.2			
1.7 401 3 0 0.0 341 1 0	0.0			
1.8 314 10 0 0.0 272 9 0	0.0			
1.9 264 11 0 0.0 294 9 1	0.3			
2.0 309 28 1 0.3 366 34 0	0.0			
2.1 288 57 0 0.0 179 60 1	0.5			
2.2 235 64 0 0.0 264 66 0	0.0			
C^{b} 323 62 0 0.0	. •			
Experiment 4/91				
1.2 358 18 3 0.8 296 14 0	0.0			
1.3 328 16 3 0.9 245 21 1	0.4			
1.4 235 9 4 1.7 290 15 6	2.0			
1.5 329 10 11 3.3 339 29 26	7.6			
1.6 280 5 4 1.4 287 14 6	2.1			
1.7 342 5 1 0.3 300 6 6	2.0			
1.8 444 7 1 0.2 503 1 1	0.2			
1.9 325 2 0 0.0 367 3 0	0.0			
2.0 296 5 0 0.0 252 14 1	0.4			
2.1 254 24 0 0.0 306 42 0	0.0			
2.2 300 32 0 0.0 265 48 0	0.0			
C^{b} 526 62 0 0.0				

Table 3 Results of the experiments with heat shock applied at the 1st mitotic division at 20 °C and 24 °C incubation temperature prior to heat shock: embryo survival and the production of 2n-larvae

^a From the total number of inseminated eggs

^b No-shock gynogenetic control

peratures, was revealed for both investigated periods, i.e., the 2nd meiotic division and the 1st cleavage. Thus, we can conclude that each investigated τ_0 corresponded to the same phase of the cell cycle in the two series,

irrespective of the difference in absolute time for shock initiation after insemination. Therefore, the results obtained have shown that heat-shock timing in experiments on chromosome-set manipulations in the

284

Table 4 Optimum heat-shoc timing observed in differen experiments on induced gynogenesis in the common c

Table 4 Optimum heat-shock timing observed in different	TemperatureDur.prior toof τ_0 shock (°C)(min	Duration of τ_{c}	Optimum timing		2n-larvae % ^b	Reference		
experiments on induced gynogenesis in the common carp		(min) ^a	min	τ ₀				
	2nd meiotic division							
	20	29.4	3.0-5.0 2.8 4.4-7.4	0.10-0.17 0.10 0.15-0.25	50(1) 63(2) 37(3)	Hollebecq et al. 1986 Gomelsky et al. 1989 Present paper		
	24	20.4	3.1-5.1	0.15-0.25	23(3)	Present paper		
	25	19.0	2.0-4.0	0.10-0.21	100	Sumantadinata et al. 1990		
	1st mitotic division							
	20	29.4	47.6 - 53.2 44.1 - 47.0	1.6 - 1.8 1.5 - 1.6	9(2) 8(3)	Gomelsky et al. 1989 Present paper		
	22	24.1	40.0	1.6	11(3)	Nagy 1987		
^a According to Ignatieva and Saat (personal communciation)	24	20.4	28.6-32.6 28.0-30.0	1.4–1.6 1.4–1.5	8 (3) 15 (3)	Present paper Komen et al. 1991		
^b In relation to: control (1), number of fertilized eggs (2), total	25	19.0	23.4-30.6 40.0-45.0	1.4 - 1.5 2.1 - 2.3	15 (3) _°	Cherfas et al. 1993 Sumantadinata et al. 1990		
number of inseminated eggs (3) ° no data			55	2.9	c	Sumantadinata et al. 1990		

^b In relation to: control (1 number of fertilized eggs (2), to number of inseminated eggs ° no data

Fig. 2 The output of 2n-gynogenetic larvae relative to the total number of inseminated eggs in gynogenetic progenies heat shocked during the 1st mitotic division, after incubation at 20 °C or 24 °C. Curves are based on mean values of four experiments

common carp can be effectively standardized using the parameter τ_0 .

Two optimum periods for heat-shock initiation were identified according to the results of our experiments: $0.15-0.25 \tau_0$ and $1.5 \tau_0$, after insemination. The first period corresponds to mid anaphase-II, and the second one to metaphase of the 1st cleavage (Ignatieva 1979; Saat 1991).

We have transformed the data of other investigations on induced gynogenesis in the common carp in which heat shock was applied, to enable comparison with those of the present study (Table 4). This was done by dividing the absolute reported time of heat-shock initiation with the duration of one τ_0 at any given pre-shock water temperature. Although results were obtained for common carp of different origins and age, the optimum timing in most studies lies within the same range of embryological age, and is concentrated within the period 0.10–0.25 τ_0 (in experiments on meiotic gynogenesis) and $1.4-1.6 \tau_0$ (in experiments on mitotic gynogenesis). No correlation between water temperature prior to heat shock (ranging from 20 to 25 °C) and optimum timing was observed. The only obvious exception is the result obtained in an experiment on mitotic gynogenesis in the Indonesian common carp (Sumantadinata et al. 1990). We conclude that either gynogenesis resulted from suppression of the 2nd cleavage in this study (1st cleavage was not investigated) or (less likely) that the duration of one τ_0 in the Indonesian common carp is different.

Based on the results of the present investigation, an embryological age of 0.20 $(0.15-0.25)\tau_0$ and 1.5 $(1.4-1.6)\tau_0$ can be recommended for the induction of chromosome-set diploidization at the 2nd meiosis and the 1st cleavage, respectively. These timings can be used within the limits of optimum temperature for common carp reproduction (20-25°C) to obtain diploid gynogenetic and polyploid progenies. Saat (1991) has recently shown that the time-course of the fertilization process (expressed in τ_0) is similar in different teleosts. Thus, the data of heat-shock timing obtained for the common carp may be applicable also for other fish species.

Acknowledgements This research was supported by Grant No. IS-1612-89R from BARD, the United States-Israel Binational Agricultural Research and Development Fund, and by the Center for Absorption in Science, Minsitry of Absorption, State of Israel. We thank Dr. G. Ignatieva, Russian Academy of Science (Moscow), and Dr. T. Saat, State University of Tartu (Estonia), for allowing us to use their data, and an anonymous reviewer for comments that helped us improve the presentation of the results.

References

.

Cherfas NB, Kozinsky O, Rothbard S, Hulata G (1990) Induced diploid gynogenesis and triploidy in ornamental (koi) carp Cyprinus carpio L. 1. Experiments on the timing of temperature shock. Isr J Aquacult.—Bamidgeh 42:3-9

286

- Cherfas NB, Hulata G, Kozinsky O (1993) Induced diploid gynogenesis and polyploidy in ornamental (koi) carp, *Cyprinus carpio* L.
 2. Timing of heat shock during the first cleavage. Aquaculture 111:281-290
- Dettlaff TA, Dettlaff AA (1961) On relative dimensionless characteristics of the development duration in embryology. Arch Biol 72:1-16
- Gomelsky BI, Recubratsky AV, Emelyanova OV, Pankratyeva EV, Lekontzeva TI (1989) Obtaining the carp diploid gynogenetic offspring by heat shock on developed eggs. (in Russian) Voprosy Ichtiology 28:168–178
- Hollebecq MG, Chourrout D, Wohlfarth G, Billard R (1986) Diploid gynogenesis induced by heat shock after activation with UVirradiated sperm in common carp. Aquaculture 54:69-76
- Ignatieva G (1974) Dependence of cleavage rate on temperature in the carp, the pike and the peled. (in Russian with English summary) Ontogenez (USSR) 5:27-32
- Komen J, Bongers ABJ, Richter CJJ, van Muiswinkel WB, Huisman EA (1991) Gynogenesis in common carp (*Cyprinus carpio* L.). II. The

production of homozygous gynogenetic clones and F_1 hybrids. Aquaculture 92:127–142

- Nagy A (1987) Genetic manipulations performed on warm-water fish. In : Tiews K (ed) Selection, hybridization, and genetic engineering in aquaculture. Heeneman Verlagsgesellschaft, Berlin, pp 163–173
- Rothbard S (1981) Induced reproduction in cultivated cyprinids-the common carp and the group of Chinese carps. I. The technique of induction, spawning and hatching. Isr J Aquacult-Bamidgeh 33:103-121
- Rothbard S (1991) Induction of endomitotic gynogenesis in the Nishiki-Goi, Japanese ornamental carp. Isr J Aquacult-Bamidgeh 43:145-159
- Saat T (1991) The time-course of fertilization of fishes and amphibians (in Russian with English summary). Ontogenez 22:63-70
- Sumantadinata K, Taniguchi N, Sugama K (1990) The necessary conditions and the use of ultraviolet-irradiated sperm from different species to induce gynogenesis in Indonesian common carp. In: Hirano R, Hanyu I (eds) Proc 2nd Asian Fisheries Forum. Asian Fish Society, Manila, pp 539–542